Works
Original Papers
Hatanaka A, Nakada S, Matsumoto G, Satoh K, Aketa I, Watanabe A, Hirakawa T, Tsujita T, Waku T, and Kobayashi A.
The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis.
Sci Rep 13, 14405 (2023) / Epub 2023 Sep 1. https://doi.org/10.1038/s41598-023-41492-9
The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis.
Sci Rep 13, 14405 (2023) / Epub 2023 Sep 1. https://doi.org/10.1038/s41598-023-41492-9
Bogahawaththa S, Kawamura T, Bandaranayake U, Hirakawa T, Yamada G, Ishino H, Hirohashi T, Kawaguchi S-i, Wijesundera KK, Wijayagunawardane MPB, Ishimaru K, Kodithuwakku SP, and Tsujita T.
Identification and mechanistic investigation of ellagitannins from Osbeckia octandra that attenuate liver fibrosis via the TGF-β/SMAD signaling pathway.
Biosci Biotech Biochem 87, 1295-1309 (2023) / Epub 2023 Aug 14. https://doi.org/10.1093/bbb/zbad114
Identification and mechanistic investigation of ellagitannins from Osbeckia octandra that attenuate liver fibrosis via the TGF-β/SMAD signaling pathway.
Biosci Biotech Biochem 87, 1295-1309 (2023) / Epub 2023 Aug 14. https://doi.org/10.1093/bbb/zbad114
Sonoda K, Ujike S, Katayama A, Suzuki N, Kawaguchi S-i, and Tsujita T.
Improving lipophilicity of 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid increases its efficacy to activate hypoxia-inducible factors.
Bioorg Med Chem 73, 17039 (2022) / Epub 2022 Sep 29/ https://doi.org/10.1016/j.bmc.2022.117039.
Improving lipophilicity of 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid increases its efficacy to activate hypoxia-inducible factors.
Bioorg Med Chem 73, 17039 (2022) / Epub 2022 Sep 29/ https://doi.org/10.1016/j.bmc.2022.117039.
Sonoda K, Bogahawaththa S, Katayama A, Ujike S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi S-i, and Tsujita T.
Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress.
ACS Pharmacol Transl Sci 5, 362-372 (2022) / Epub 2022 Apr 13. https://doi.org/10.1021/acsptsci.2c00002.j.bmc.2022.117039.
Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress.
ACS Pharmacol Transl Sci 5, 362-372 (2022) / Epub 2022 Apr 13. https://doi.org/10.1021/acsptsci.2c00002.j.bmc.2022.117039.
Bogahawaththa S, Kodithuwakku SP, Wijesundera KK, Siriweera EH, Jayasinghe L, Dissanayaka WL, Rajapakse J, Herath CB, Tsujita T* and Wijayagunawardane MPB*.
Anti-fibrotic and anti-angiogenic activities of Osbeckia Octandra leaf extracts in thioacetamide-induced experimental liver cirrhosis.
Molecules 26, 4836 (2021) / Epub 2021 Aug 10. https://doi.org/10.3390/molecules26164836.
Anti-fibrotic and anti-angiogenic activities of Osbeckia Octandra leaf extracts in thioacetamide-induced experimental liver cirrhosis.
Molecules 26, 4836 (2021) / Epub 2021 Aug 10. https://doi.org/10.3390/molecules26164836.
Sekine H, Okazaki K, Kato K, Alam MM, Shima H, Katsuoka F, Tsujita T, Suzuki N, Kobayashi A, Igarashi K, Yamamoto M and Motohashi H.
O-GlcNAcylation signal mediates proteasome inhibitor resistance in cancer cells by stabilizing NRF1.
Mol Cell Biol 38, 4e00252-18 / Epub 2018 June 25. http s://doi.org/10.1128/MCB.00252-18.
O-GlcNAcylation signal mediates proteasome inhibitor resistance in cancer cells by stabilizing NRF1.
Mol Cell Biol 38, 4e00252-18 / Epub 2018 June 25. http s://doi.org/10.1128/MCB.00252-18.
Kawaguchi S-i, Gonda Y, Yamamoto T, Sato Y, Shinohara H, Kobiki Y, Ichimura A, Dan T, Sonoda M, Miyata T, Ogawa A and Tsujita T.
Furan- and thiophene-2-carbonyl amino acid derivatives activate hypoxia-inducible factor via inhibition of factor inhibiting hypoxia-inducible factor-1.
Molecules 23, 885 (2018) / Epub 2018 Apr 10. https://doi.org/10.3390/molecules23040885.
Furan- and thiophene-2-carbonyl amino acid derivatives activate hypoxia-inducible factor via inhibition of factor inhibiting hypoxia-inducible factor-1.
Molecules 23, 885 (2018) / Epub 2018 Apr 10. https://doi.org/10.3390/molecules23040885.
Mukaigasa K¶, Tsujita T¶, Nguyen VT¶, Li L¶, Yagi H, Fuse Y, Nakajima-Takagi Y, Kato K, Yamamoto M, Kobayashi M.
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish.
Proc Natl Acad Sci USA 115, 2758-2763 (2018) / Epub 2018 Feb 22. https://doi.org/10.1073/pnas.1714056115. ¶co-first author
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish.
Proc Natl Acad Sci USA 115, 2758-2763 (2018) / Epub 2018 Feb 22. https://doi.org/10.1073/pnas.1714056115. ¶co-first author
Kaneko H, Katoh T, Hirano I, Hasegawa A, Tsujita T, Saya H, Yamamoto M, Shimizu R.
Induction of erythropoietin gene expression in epithelial cells by chemicals identified in GATA-inhibitor screenings.
Genes Cells22, 939-952 (2017) / Epub 2017 Oct 18 https://doi.org/10.1111/gtc.12537.
Induction of erythropoietin gene expression in epithelial cells by chemicals identified in GATA-inhibitor screenings.
Genes Cells22, 939-952 (2017) / Epub 2017 Oct 18 https://doi.org/10.1111/gtc.12537.
Sakaguchi Y, Minamikawa T, Yamamuro M, Tsujita T, Ueda T, Kamada K, Soh N.
Time-resolved fluorescent detection for glucose using a complex of luminescent layered titanates and enzymes.
Anal Sci33, 989-991 (2017) / Epub 2017 Sep 10. https://doi.org/10.2116/analsci.33.989.
Time-resolved fluorescent detection for glucose using a complex of luminescent layered titanates and enzymes.
Anal Sci33, 989-991 (2017) / Epub 2017 Sep 10. https://doi.org/10.2116/analsci.33.989.
Ito R, Sato I, Tsujita T, Yokoyama A, Sugawara A.
A ubiquitin-proteasome inhibitor bortezomib suppresses the expression of CYP11B2, a key enzyme of aldosterone synthesis.
Biochem Biophys Res Commun489, 21-28 (2017) / Epub 2017 May 19. https://doi.org/10.1016/j.bbrc.2017.05.109.
A ubiquitin-proteasome inhibitor bortezomib suppresses the expression of CYP11B2, a key enzyme of aldosterone synthesis.
Biochem Biophys Res Commun489, 21-28 (2017) / Epub 2017 May 19. https://doi.org/10.1016/j.bbrc.2017.05.109.
Tsuchida T¶, Tsujita T¶, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki M, Yamamoto M.
Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation.
Free Radic Biol Med103, 236-247 (2017) / Epub 2016 Dec 28. https://doi.org/10.1016/j.freeradbiomed.2016.12.041. ¶co-first author
Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation.
Free Radic Biol Med103, 236-247 (2017) / Epub 2016 Dec 28. https://doi.org/10.1016/j.freeradbiomed.2016.12.041. ¶co-first author
Baird L, Tsujita T, Kobayashi E, Funayama R, Nagashima T, Nakayama K, and Yamamoto M.
A Homeostatic Shift Facilitates Endoplasmic Reticulum Proteostasis through Transcriptional Integration of Proteostatic Stress Response Pathways.
Mol Cell Biol37, 236-247 (2017) / e00439-16 (2017) / Epub 2016 Dec 6. https://doi.org/10.1128/MCB.00439-16.
A Homeostatic Shift Facilitates Endoplasmic Reticulum Proteostasis through Transcriptional Integration of Proteostatic Stress Response Pathways.
Mol Cell Biol37, 236-247 (2017) / e00439-16 (2017) / Epub 2016 Dec 6. https://doi.org/10.1128/MCB.00439-16.
Tojo Y, Sekine H, Hirano I, Pan X, Souma T, Tsujita T, Kawaguchi S-i, Takeda N, Takeda K, Fong G, Dan T, Ichinose M, Miyata T, Yamamoto M, and Suzuki N.
Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes.
Mol Cell Biol35,2658-2672 (2015) / Epub 2015 May 26. https://doi.org/10.1128/MCB.00161-15.
Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes.
Mol Cell Biol35,2658-2672 (2015) / Epub 2015 May 26. https://doi.org/10.1128/MCB.00161-15.
Tsujita T*, Baird L, Furusawa Y, Katsuoka F, Hou Y, Gotoh S, Kawaguchi S-i, and Yamamoto M*.
Discovery of an NRF1-specific inducer from a large-scale chemical library using a direct NRF1-protein monitoring system.
Genes Cells20,563-577 (2015) / Epub 2015 May 4. https://doi.org/10.1111/gtc.12248.
Discovery of an NRF1-specific inducer from a large-scale chemical library using a direct NRF1-protein monitoring system.
Genes Cells20,563-577 (2015) / Epub 2015 May 4. https://doi.org/10.1111/gtc.12248.
Tsujita T*, Kawaguchi S-i, Dan T, Baird L, Miyata T, and Yamamoto M*.
Sensitive hypoxia reporter system for high through put screening.
Tohoku J Exp Med235,151-159 (2015) / Epub 2015 Feb 25. https://doi.org/10.1620/tjem.235.151.
Sensitive hypoxia reporter system for high through put screening.
Tohoku J Exp Med235,151-159 (2015) / Epub 2015 Feb 25. https://doi.org/10.1620/tjem.235.151.
Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H and Ishii M.
DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway.
Nat Med 21,281-287 (2015) / Epub 2015 Feb 23. https://doi.org/10.1038/nm.3774.
DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway.
Nat Med 21,281-287 (2015) / Epub 2015 Feb 23. https://doi.org/10.1038/nm.3774.
Tsujita T, Peirce V, Baird L, Matsuyama Y, Takaku M, Walsh SV, Griffin JL, Uruno A, Yamamoto M, and Hayes JD.
Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes.
Mol Cell Biol34,3800-3816 (2014) / Epub 2014 Aug 4. https://doi.org/10.1128/MCB.00110-14.
Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes.
Mol Cell Biol34,3800-3816 (2014) / Epub 2014 Aug 4. https://doi.org/10.1128/MCB.00110-14.
Hirotsu Y, Higashi C, Fukutomi T, Katsuoka F, Tsujita T, Yagishita Y, Matsuyama Y, Motohashi H, Uruno A, and Yamamoto M.
Transcription factor NF-E2-related factor 1 impairs glucose metabolism in mice.
Genes Cells19, 650-665 (2014) / Epub 2014 Jul 6. https://doi.org/10.1111/gtc.12165.
Transcription factor NF-E2-related factor 1 impairs glucose metabolism in mice.
Genes Cells19, 650-665 (2014) / Epub 2014 Jul 6. https://doi.org/10.1111/gtc.12165.
Skoko JJ, Wakabayashi N, Noda K, Kimura S, Tobita K, Shigemura N, Tsujita T, Yamamoto M, and Kensler TW.
Loss of Nrf2 in mice evokes a congenital intrahepatic shunt that alters hepatic oxygen and protein expression gradients and toxicity.
Toxicol Sci141,112-119 (2014) / Epub 2014 Jun 12. https://doi.org/10.1093/toxsci/kfu109.
Loss of Nrf2 in mice evokes a congenital intrahepatic shunt that alters hepatic oxygen and protein expression gradients and toxicity.
Toxicol Sci141,112-119 (2014) / Epub 2014 Jun 12. https://doi.org/10.1093/toxsci/kfu109.
Hancock R, Bertrand HC, Tsujita T, Naz S, Laoruchupong J, Hayes JD, and Wells G.
Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.
Free Radic Biol Med522,445-421 (2012) / Epub 2011 Nov 3. https://doi.org/10.1016/j.freeradbiomed.2011.10.486.
Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.
Free Radic Biol Med522,445-421 (2012) / Epub 2011 Nov 3. https://doi.org/10.1016/j.freeradbiomed.2011.10.486.
Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T, Hayes JD, Pedersen RA, Hardingham GE, and Chandran S.
Human embryonic stem cell derived astrocytes mediate non-cell autonomous neuroprotection through endogenous and drug-induced mechanisms.
Cell Death Differ19,779-787 (2012) / Epub 2011 Nov 18. https://doi.org/10.1038/cdd.2011.154.
Human embryonic stem cell derived astrocytes mediate non-cell autonomous neuroprotection through endogenous and drug-induced mechanisms.
Cell Death Differ19,779-787 (2012) / Epub 2011 Nov 18. https://doi.org/10.1038/cdd.2011.154.
Nakajima H, Nakajima-Takagi Y, Tsujita T, Akiyama S, Wakasa T, Mukaigasa K, Kaneko H, Tamaru Y, Yamamoto M, and Kobayashi M.
Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles based on Nrf2-independent regulation.
PLoS One6,e26884 (2011) / Epub 2011 Oct 25. https://doi.org/10.1371/journal.pone.0026884.
Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles based on Nrf2-independent regulation.
PLoS One6,e26884 (2011) / Epub 2011 Oct 25. https://doi.org/10.1371/journal.pone.0026884.
Bell KF, Al-Mubarak B, Fowler JH, Paul S, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R, Chandran, S, Horsburgh K, Hayes JD, and Hardingham GE.
Mild oxidative stress activates Nrf2 in astrocytes which contributes to neuroprotective ischemic preconditioning.
Proc Natl Acad Sci USA 108,E1-2 (2011) / Epub 2010 Dec 21. https://doi.org/10.1073/pnas.1015229108.
Mild oxidative stress activates Nrf2 in astrocytes which contributes to neuroprotective ischemic preconditioning.
Proc Natl Acad Sci USA 108,E1-2 (2011) / Epub 2010 Dec 21. https://doi.org/10.1073/pnas.1015229108.
Tsujita T, Li L, Nakajima H, Iwamoto N, Nakajima-Takagi Y, Ohashi K, Kawakami K, Kumagai Y, Freeman B, Yamamoto M, and Kobayashi M.
Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: study using GFP transgenic zebrafish.
Genes Cells16,46-57 (2011) / Epub 2010 Dec 9. https://doi.org/10.1111/j.1365-2443.2010.01466.x. (2011-2012年出版Gene to Cells誌引用数TOP3論文)
Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: study using GFP transgenic zebrafish.
Genes Cells16,46-57 (2011) / Epub 2010 Dec 9. https://doi.org/10.1111/j.1365-2443.2010.01466.x. (2011-2012年出版Gene to Cells誌引用数TOP3論文)
Chowdhry S, Nazmy MH, Meakin PJ, Dinkova-Kostova AT, Walsh SV, Tsujita T, Dillon JF, Ashford ML, and Hayes JD.
Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis.
Free Radic Biol Med49,357-371 (2010) / Epub 2009 Nov 13. http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.007.
Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis.
Free Radic Biol Med49,357-371 (2010) / Epub 2009 Nov 13. http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.007.
Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu M, Matsumoto M, and Seya T.
Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses.
J Biol Chem283,3474-3485 (2008) / Epub 2008 Sep 1. http://dx.doi.org/10.4049/jimmunol.181.5.3474.
Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses.
J Biol Chem283,3474-3485 (2008) / Epub 2008 Sep 1. http://dx.doi.org/10.4049/jimmunol.181.5.3474.
Fukuda K, Watanabe T, Tokisue T, Tsujita T, Nishikawa S, Hasegawa T, Seya T, and Matsumoto M.
Modulation of double-stranded RNA recognition by the N-terminal histidine-rich region of the human Toll-like receptor 3.
J Immunol181,22787-22794 (2008) / Epub 2008 Jun 10. https://doi.org/10.1074/jbc.M802284200.
Modulation of double-stranded RNA recognition by the N-terminal histidine-rich region of the human Toll-like receptor 3.
J Immunol181,22787-22794 (2008) / Epub 2008 Jun 10. https://doi.org/10.1074/jbc.M802284200.
Yoshioka M, Fukuishi N, Iriguchi S, Ohsaki K, Yamanobe H, Inukai A, Kurihara D, Imajo N, Yasui Y, Matsui N, Tsujita T, Ishii A, Seya T, Takahama M, and Akagi M.
Lipoteichoic acid downregulates Fc epsilon RI expression on human mast cells through Toll-like receptor 2.
J Allergy Clin Immunol120,452-461 (2007) / Epub 2007 May 3. https://doi.org/10.1016/j.jaci.2007.03.027.
Lipoteichoic acid downregulates Fc epsilon RI expression on human mast cells through Toll-like receptor 2.
J Allergy Clin Immunol120,452-461 (2007) / Epub 2007 May 3. https://doi.org/10.1016/j.jaci.2007.03.027.
Ishii A, Matsuo A, Sawa H, Tsujita T, Shida K, Matsumoto M, and Seya T.
Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors.
J Immunol178,397-406 (2007) / Epub 2007 Jan 1. https://doi.org/10.4049/jimmunol.178.1.397.
Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors.
J Immunol178,397-406 (2007) / Epub 2007 Jan 1. https://doi.org/10.4049/jimmunol.178.1.397.
Tsujita T, Ishii A, Tsukada H, Matsumoto M, Che FS, and Seya T.
Fish soluble Toll-like receptor (TLR) 5 amplifies human TLR5 response via physical binding to flagellin.
Vaccine15,2193-2199 (2005) / Epub 2005 Nov 14. https://doi.org/10.1016/j.vaccine.2005.11.003.
Fish soluble Toll-like receptor (TLR) 5 amplifies human TLR5 response via physical binding to flagellin.
Vaccine15,2193-2199 (2005) / Epub 2005 Nov 14. https://doi.org/10.1016/j.vaccine.2005.11.003.
Tsukada H, Fukui A, Tsujita T, Matsumoto M, Iida T, and Seya T.
Fish soluble Toll-like receptor 5 (TLR5S) is an acute-phase protein with integral flagellin-recognition activity.
Int J Mol Med15,519-525 (2005) / Epub 2005 Mar 1. https://doi.org/10.3892/ijmm.15.3.519.
Fish soluble Toll-like receptor 5 (TLR5S) is an acute-phase protein with integral flagellin-recognition activity.
Int J Mol Med15,519-525 (2005) / Epub 2005 Mar 1. https://doi.org/10.3892/ijmm.15.3.519.
Tsujita T, Tsukada H, Nakao M, Oshiumi H, Matsumoto M, and Seya T.
Sensing bacterial flagellin by membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Onchorhynchus mikiss).
J Biol Chem47,48588-48597 (2004) / Epub 2004 Aug 31. https://doi.org/10.1074/jbc.M407634200.
Sensing bacterial flagellin by membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Onchorhynchus mikiss).
J Biol Chem47,48588-48597 (2004) / Epub 2004 Aug 31. https://doi.org/10.1074/jbc.M407634200.
Oshiumi H, Tsujita T, Shida K, Matsumoto M, Ikeo K, and Seya T.
Prediction of the prototype of human Toll-like receptor gene family from Pufferfish Takifugu rubripes genome.
Immunogenetics 54,791-800 (2003) / Epub 2003 Jan 15. https://doi.org/10.1007/s00251-002-0519-8.
Prediction of the prototype of human Toll-like receptor gene family from Pufferfish Takifugu rubripes genome.
Immunogenetics 54,791-800 (2003) / Epub 2003 Jan 15. https://doi.org/10.1007/s00251-002-0519-8.
Review Papers
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K.
Emerging role of GCN1 in disease and homeostasis.
Int J Mol Sci25,2998 (2024) / Epub 2024 Mar 05. https://doi.org/10.3390/ijms25052998.
Seya T, Akazawa T, Tsujita T, and Matsumoto M.
Role of Toll-like receptors in adjuvant-augmented immune therapies.
Evid Based Complement Alternat Med3,31-38 (2006) / Epub 2006 Jan 30. https://doi.org/10.1093/ecam/nek010.
邦文
Original Papers
押海 裕之, 辻田 忠志, 信田 京子, 松本 美佐子, 瀬谷 司
がん治療モデルとしての魚類の可能性の探索
成人病(公益財団法人大阪成人病予防協会)44,11-12 (2004)
Review Papers
川口 真一, 辻田 忠志.
2-OG骨格を持たない次世代HIF活性化分子PyrzA.
和光純薬時報90,6-7 (2022)
辻田 忠志.
Nrf1(NFE2L1)の転写抑制能による細胞内チオール量および脂肪酸代謝制御
生化学(日本生化学会)88,776-781 (2016) / https://doi.org/10.14952/ SEIKAGAKU.2016.880776